View Factor Calculator: Analytical and Monte Carlo Method

In this web page, radiation view factors (also know as configuration factors) for different geometrical configurations can be calculated by the analytical formula and Monte Carlo method. The Monte Carlo calculation uses WebGL 2.0. Depending on the browser and hardware configuration, this functionality might not work. The number of rays for the view factor calculation is 100,000. The seeds of the random number generator are fixed, so the results are reproducible.

Differential surface to circular disk

r ( r > 0 ) :
h ( h > 0 ) :
θ [°] ( 0 ≤ θ ≤ 180 ) :
Analytical calculation 0.0
Monte Carlo method 0.0
\begin{gather} F_{d1-2} = \frac{r^2}{r^2+h^2} \cos \theta, ~~ \mathrm{where}~~\theta \le \arctan \frac{h}{r} \\ F_{d1-2} = 0, ~~ \mathrm{where}~~\theta > \arctan \frac{r}{h} + \frac{\pi}{2} \end{gather}

Differential surface to circular disk in parallel plane

r ( r > 0 ) :
h ( h > 0 ) :
a ( a ≥ 0 ) :
Analytical calculation 0.0
Monte Carlo method 0.0
\begin{gather} F_{d1-2} = \frac{1}{2} \left[ 1 - \frac{Z-2R^2}{\sqrt{Z^2 - 4R^2}} \right] \\ \mathrm{where}~~H = \frac{h}{a}, ~~ R = \frac{r}{a}, ~~ Z = 1 + H^2 + R^2 \\ \end{gather}

Differential surface to rectangular surface in parallel plane

a ( a > 0 ) :
b ( b > 0 ) :
c ( c > 0 ) :
Analytical calculation 0.0
Monte Carlo method 0.0
\begin{gather} F_{d1-2} = \frac{1}{2\pi} \left( \frac{A}{\sqrt{1+A^2}} \arctan \frac{B}{\sqrt{1+A^2}} + \frac{B}{\sqrt{1+B^2}} \arctan \frac{A}{\sqrt{1+B^2}} \right) \\ \mathrm{where}~~A = \frac{a}{c}, ~~ B = \frac{b}{c} \end{gather}

Differential surface to rectangular surface in 90° angle

a ( a > 0 ) :
b ( b > 0 ) :
c ( c > 0 ) :
Analytical calculation 0.0
Monte Carlo method 0.0
\begin{gather} F_{d1-2} = \frac{1}{2\pi} \left( \arctan \frac{1}{Y} - \frac{Y}{\sqrt{X^2+Y^2}} \arctan \frac{1}{\sqrt{X^2+Y^2}} \right) \\ \mathrm{where}~~X = \frac{a}{b}, ~~Y = \frac{c}{b} \end{gather}

Differential surface to sphere

r ( 0 < r < h ) :
h ( 0 < r < h ) :
θ [°] ( 0 ≤ θ ≤ 180 ) :
Analytical calculation 0.0
Monte Carlo method 0.0
\begin{gather} F_{d1-2} = \left( \frac{r}{h} \right)^2 \cos \theta, ~~ \mathrm{where}~~\theta \le \arccos \frac{r}{h} \\ F_{d1-2} = 0, ~~ \mathrm{where}~~\theta > \arcsin \frac{r}{h} + \frac{\pi}{2} \end{gather}

Differential surface to cylinder

r ( 0 < r < h ) :
h ( 0 < r < h ) :
l ( 0 < l ) :
Analytical calculation 0.0
Monte Carlo method 0.0
\begin{gather} F_{d1-2} = \frac{L}{\pi H} \left[ \frac{1}{L} \arctan \frac{L}{\sqrt{H^2-1}} + \frac{X-2H}{\sqrt{XY}} \arctan \sqrt{\frac{X(H-1)}{Y(H+1)}} - \arctan \sqrt{\frac{H-1}{H+1}} \right] \\ \mathrm{where}~~L = \frac{l}{r}, ~~ H = \frac{h}{r}, \\ X = (1+H)^2 + L^2, ~~ Y = (1-H)^2 + L^2 \end{gather}

Differential surface to right triangle in parallel plane

h ( h > 0 ) :
l ( l > 0 ) :
θ [°] ( 0 < θ < 90 ) :
Analytical calculation 0.0
Monte Carlo method 0.0
\begin{gather} F_{d1-2} = \frac{D}{2\pi A} \arctan \left( \frac{D \tan \theta}{A} \right), ~~ \mathrm{where}~~D = \frac{d}{h}, ~~ A = \sqrt{1+D^2} \end{gather}

Disk to parallel coaxial disk

h ( h > 0 ) :
r₁ ( r₁ > 0 ) :
r₂ ( r₂ > 0 ) :
Analytical calculation 0.0
Monte Carlo method 0.0
\begin{gather} F_{1-2} = \frac{1}{2} \left\{ X - \sqrt{X^2 - 4\left( \frac{R_2}{R_1} \right)^2} \right\} \\ \mathrm{where} ~~ X = 1 + \frac{1 + R_2^2}{R_1^2}, ~~ R_1 = \frac{r_1}{a}, ~~ R_2 = \frac{r_2}{a} \end{gather}

Base disk to inside surface of cylincer

h ( h > 0 ) :
r₁ ( r > 0 ) :
Analytical calculation 0.0
Monte Carlo method 0.0
\begin{gather} F_{1-2} = 2H \left[ \sqrt{1+H^2} - H \right] \\ \mathrm{where} ~~ H = \frac{h}{2r} \end{gather}

Identical, parallel, directly opposed rectangles

a ( a > 0 ) :
b ( b > 0 ) :
c ( c > 0 ) :
Analytical calculation 0.0
Monte Carlo method 0.0
\begin{align} F_{1-2} = &\frac{2}{\pi XY} \left\{ \ln \left[ \frac{(1+X^2)(1+Y^2)}{1+X^2+Y^2} \right]^{1/2} + X \sqrt{1+Y^2} \arctan \frac{X}{\sqrt{1+Y^2}} \right. \\ &\left. + Y \sqrt{1+X^2} \arctan \frac{Y}{\sqrt{1+X^2}} - X \arctan X - Y \arctan Y \right\} \\ &\hspace{70pt}\mathrm{where} ~~ X = \frac{a}{c}, ~~ Y = \frac{b}{c} \end{align}

Two rectangles with one common edge and 90° angle

h ( h > 0 ) :
w ( w > 0 ) :
l ( l > 0 ) :
Analytical calculation 0.0
Monte Carlo method 0.0
\begin{align} &F_{1-2} = \frac{1}{\pi W} \left( W \arctan \frac{1}{W} + H \arctan \frac{1}{H} - \sqrt{H^2 + W^2} \arctan \frac{1}{\sqrt{H^2 + W^2}} \right. \\ &\left. + \frac{1}{4} \ln \left\{ \frac{(1+W^2)(1+H^2)}{1+W^2+H^2} \left[ \frac{W^2(1+W^2+H^2)}{(1+W^2)(W^2+H^2)} \right]^{W^2} \left[ \frac{H^2(1+W^2+H^2)}{(1+H^2)(W^2+H^2)} \right]^{H^2} \right\} \right) \\ &\hspace{110pt}\mathrm{where} ~~ H = \frac{h}{l}, ~~ W = \frac{w}{l} \end{align}

Unit sphere to rectangle

h ( h > 1 ) :
l₁ ( l₁ > 0 ) :
l₂ ( l₂ > 0 ) :
Analytical calculation 0.0
Monte Carlo method 0.0
\begin{align} F_{1-2} &= \frac{1}{4\pi} \arctan \sqrt{\frac{1}{H_1^2+H_2^2+H_1^2H_2^2}} \\ &\mathrm{where} ~~ H_1 = \frac{h}{l_1}, ~~H_2 = \frac{h}{l_2} \end{align}

Unit sphere to coaxial disk

h ( h > 1 ) :
r ( r > 0 ) :
Analytical calculation 0.0
Monte Carlo method 0.0
\begin{align} F_{1-2} &= \frac{1}{2} \left[ 1 - \frac{1}{\sqrt{1+R^2}} \right] \\ &\mathrm{where} ~~ R = \frac{r}{h} \end{align}

Sphere to coaxial cone

h ( h > 0 ) :
r₁ ( r₁ > 0 ) :
r₂ ( r₂ > 0 ) :
θ [°] ( 0 < θ < 90 ) :
Analytical calculation 0.0
Monte Carlo method 0.0
\begin{align} F_{1-2} &= \frac{1}{2} \left[ 1 - \frac{1+H+R/\tan\theta}{\sqrt{(1+H+R/\tan\theta)^2 + R^2}} \right] \\ &\mathrm{where} ~~ H = \frac{h}{r_1}, ~~ R = \frac{r_2}{r_1}, ~~ \theta \ge \arcsin \frac{1}{1+H} \end{align}

Interior of outer cylinder to exterior of coaxial inner cylinder

h ( h > 0 ) :
r₁ ( r₁ > 0 ) :
r₂ ( r₂ > 0 ) :
Analytical calculation 0.0
Monte Carlo method 0.0
\begin{align} &F_{2-1} = \frac{1}{R} \left( 1 - \frac{H^2+R^2-1}{4H} - \frac{1}{\pi} \left\{ \arccos \frac{H^2-R^2+1}{H^2+R^2-1} \right. \right. \\ &\left. \left. - \frac{\sqrt{(H^2+R^2+1)^2-4R^2}}{2H} \arccos \frac{H^2-R^2+1}{R(H^2+R^2-1)} - \frac{H^2-R^2+1}{2H} \arcsin \frac{1}{R} \right\} \right) \\ &\hspace{50pt} \mathrm{where} ~~ R_1 = \frac{r_1}{h}, ~~R_2 = \frac{r_2}{h}, ~~A = R_2 + R_1, ~~B = R_2 - R_1 \end{align}

Interior of cone to base disk

h ( h > 0 ) :
r ( r > 0 ) :
Analytical calculation 0.0
Monte Carlo method 0.0
\begin{align} &F_{1-2} = \frac{1}{\sqrt{1+H^2}}, ~~ \mathrm{where} ~~ H = \frac{h}{r} \end{align}
Your browser does not support the HTML5 canvas element.